Learning a Game Commentary Generator with Grounded Move Expressions

<u>Hirotaka Kameko⁺</u>, Shinsuke Mori[‡] and Yoshimasa Tsuruoka[†]

⁺University of Tokyo, Japan [‡]Kyoto University, Japan

September 1st, 2015

- •Using computer game players as
 - an opponent player
 - Chess: stronger than top human players
 - Shogi: as strong as top human players
 - a commentator
 - to know which player is better
 - to know which move is the best

Computer Player as a Teacher

Human Player as a Teacher

Natural language is easy to understand for humans

Related Work

- Template-base comment generation [Kaneko, 2012]
 - ex.) Black will mate from <MOVE>.
- •Our approach:
 - To generate a variety of comments

Shogi

also known as Japanese chess

	9	8	7	6	5	4	3	2	1			_	9	8	7	6	5	4	з	2	1	
	査	卦	貾	₹	Ŧ	惷	貾	卦	雸	<u> </u>			₿	B	X	桑	Ŷ	툣	X	B	Å	а
		豣						₿		<u> </u>				Ä						Ş		b
	¥:	#	#	\$	#	#	#	#	#	Ξ			Å	Å	Â	¥	Å	¥	Å	Å	Å	С
										四												d
										五												e
										六												f
	步	步	步	步	步	步	歩	步	步	七			순	ح	순	£	₹	순	순	ح	免	g
		角						飛		Д				ŝ						Ä		h
	香	桂	銀	金	Ŧ	金	銀	桂	香	九		_	\$	Ð	×	堟	Å	堟	×	Ð	\$	i
\cup												\cup										

9×9 board to capture the opponent's King (same as Chess) Comments are written in Japanese

Previous Work [kameko et al., 2014]

Move Expressions and Game State

In this position, if White plays Rx7f to mirror Black, Black will play Bx2b+ and White cannot capture the moved bishop, so White will lose.

NOT for the current position

わってしまう。

₹ 2

P-8f Rx8f (current) Rx3d \leftarrow In this position $Rx7f \leftarrow to mirror Black$ (after the move,) Bx2b+ ← White cannot capture the moved bishop

+other information (promotion, dropping and disambiguation)

Proposed Method

- Acquisition of state-comment pairs
 - Mapping move expressions to the game tree

- Comment generation
 - Training a model using statecomment pairs

₹ V If White plays <mark>R-2e</mark> to turn the rook, Black has to play P*2h.

11 / 21

•Input: a position, comments, and the previous two moves

P*8g

R-8e

R-2f

If White plays <mark>R-2e</mark> to turn the rook, Black has to play P*2h.

• Listing up the legal trees (candidate trees)

₹

If White plays <mark>R-2e</mark> to turn the rook, Black has to play P*2h.

• Selecting the right tree (commented tree)

If White plays R-2e to turn the rook, Black has to play P*2h.

Overview (Training)

Preprocessing for Japanese (an unsegmented language)

Overview (Generation)

Multi-layer Perceptron

input: a game state output: words which are in the comment for the state

It gives higher scores to words that should appear in the comment

Log-Linear Language Model

maximize P(S | p) $\simeq P(S_N | length(S_N) = n)$

$$\times \prod_{i} P(w_i \mid p, w_{i-2}, w_{i-1})$$

a, an, the, ... : \bigcirc

 $S = w_1, w_2, ..., w_n$: a sentence This is \rightarrow w_i : i^{th} word of the sentence S do, walk, ... : \otimes p: a game state (a position or a move)

Corpus

- •Game records with comments by human experts
 - Championship matches and preliminary tournaments
 - about 300,000 comments (includes noisy comments)
 - \rightarrow We acquired 44,166 trees

Generated Comments

Move: P-4f

Word	Score	Word	Score
腰掛け (reclining)	0.99	指 (action)	0.99
方 (plan)	0.99	銀 (silver)	0.98

▲ 4 六歩から腰掛け銀を目指す指し方もあるところだが、 (Black can play P-4f and aim for reclining-silver strategy, but...)

Our system can generate correct sentences for some positions

Summary and Discussion

- •We have generated commentaries of Shogi game
 - The error rate is very high

- Future work
 - using richer information when generating
 - result of searching